Exploring Significance of Speech Features for Emotion Recognition

Saurabh Kumar, Akhil Babu Manam, Venkata Aditya Chintala

Motivation

- Emotion recognition is an important problem
- Has applications in many human computer interaction tasks
- · Speech contains information related to emotion.

Objective

- Detect emotion of individuals from speech
- Explore acoustic features in speech data
- Classify into categories of:
 - Anger
 - Happiness
 - Sadness
 - Neutrality

Dataset

- Interactive Emotional Dyadic Motion Capture (IEMOCAP)
- Acted, multimodal and multi speaker database
- Collected at <u>SAIL</u> lab at <u>USC</u>.
- 12 hours of audiovisual data, including video, speech, motion capture of face and text transcriptions
- Annotated by evaluators in both categorical and dimensional labels at utterance level
- Categorical labels such as anger, happiness, sadness, neutrality, as well as dimensional labels such as valence, activation and dominance.

Features

Low - level (Frame - level) features

- Mel-frequency cepstral coefficients (MFCC)
- Linear Prediction cepstral coefficients (LPCC)
- Residual Mel-frequency cepstral coefficients (RMFCC)

Utterance - level features

- Shimmer, Jitter
- Harmonics to Noise statistics (Voice quality)
- Unvoiced to voiced frame ratio
- Opensmile Paralinguistic Challenge 2010 configuration

Low-level descriptors

MFCC

- Traditionally used for representing speech for tasks like speech recognition, speaker recognition, emotion recognition etc.
- · Contain information related to the vocal tract.

LPCC

- Also capture information related Glottal pulses to vocal tract.
- Used in voice coding.

Low-level descriptors

RMFCC

- Residual signal extracted by inverse filtering of signal through LPC filter
- E(z)*H(z) = S(z) => E(z) = S(z)/H(z) = S(z)*A(z)
- S(z) -> Speech signal
- H(z) -> Vocal tract filter (extracted from LPCC coefficients)
- E(z) -> Excitation source approximation

Inverse filter

Utterance-level features

Jitter & Shimmer - collected from PRAAT

- Extracted from pitch contour
- Jitter is a measure of sum of |T(i) T(i+1)|, T(i) = time (at pitch i)
- Shimmer is a measure of sum of |A(i) A(i+1)|, A(i) = amplitude

Harmonics to noise ratio - collected from PRAAT

Harmonicity to noise ratio in the voiced frames

Unvoiced to voiced frames ratio

Ratio of number of frames that are unvoiced to voiced

Utterance-level features

Opensmile features (OpenSmile Appendix)

- 1582 features
- Used for Paralinguistic, emotion recognition tasks
- Represent various LLD features using statistics
- Collect various utterance level descriptors

Low-Level Features to Utterance-level

Segment-level representations for low-level descriptors are extracted:

- LSTM categorical embeddings
 - LSTM (512 hidden units)
 - LSTM (256 hidden units)
 - Dense (relu, 256 hidden units) -> feature
 - Dense (softmax, 4 outputs)
- LSTM Autoencoder embeddings

For both these embeddings, the frames are truncated or padded to obtain common shape.

Opensmile vs Deep features

Opensmile features

- Independent of data (pro)
- Cannot be used for complex tasks Transfer Learning, Multi-task learning, cross lingual emotion recognition etc. (con)

Deep features

- Require enormous labeled data which is expensive and time taking.
 (con)
- Unsupervised features (LSTM Autoencoders) can be used to solve data sparsity issues (pro).

Evaluation and Results

Leave-one-Subject-out validation

Metrics - Accuracy

Classifiers	SVM	
Features	Weighted (Recall / Precision / F1-score)	Unweighted (Recall / Precision / F1-score)
Jitter + Shimmer + HNR + UV ratio	31.50 (3.05)	38.30 (3.29)
LSTM categorical embedding (MFCC)	51.47 (2.20)	52.75 (4.01)
Opensmile features (PC 2010)	52.70 (1.03)	48.20 (2.76)
LSTM categorical embedding	46.73 (11.82)	44.55 (0.16)

Future Work

- Evaluation on LSTM Autoencoder embeddings
- · Check if significant improvement exists by fusing features.

Conclusions

- We have explored various features including deep LSTM features for speech emotion recognition
- · Addressed the usefulness of each features in different scenario.
- We have found that their performances are comparable.

References

- [1] S.B. Davis, and P. Mermelstein (1980), "Comparison of Parametric Representations for Monosyllabic Word Recognition in Continuously Spoken Sentences," in *IEEE Transactions on Acoustics, Speech, and Signal Processing*, 28(4), pp. 357–366.
- [2] Atal BS. Effectiveness of linear prediction characteristics of the speech wave for automatic speaker identification and verification. the Journal of the Acoustical Society of America. 1974 Jun;55(6):1304-12.
- [3] Ingale AB, Chaudhari DS. Speech emotion recognition. International Journal of Soft Computing and Engineering (IJSCE). 2012 Mar;2(1):235-8.

Questions?