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Motivation

Emotion recognition is an important problem
Has applications in many human computer interaction tasks
. Speech contains information related to emotion.



Objective

* Detect emotion of individuals from speech
* Explore acoustic features in speech data

* Classify into categories of:
* Anger
* Happiness
* Sadness
* Neutrality



Dataset

* Interactive Emotional Dyadic Motion Capture (IEMOCAP)
e Acted, multimodal and multi speaker database
* Collected at SAIL lab at USC.

* 12 hours of audiovisual data, including video, speech, motion capture
of face and text transcriptions

* Annotated by evaluators in both categorical and dimensional labels at
utterance level

e Categorical labels such as anger, happiness, sadness, neutrality, as
well as dimensional labels such as valence, activation and
dominance.


http://sail.usc.edu/
http://www.usc.edu/

Features

Low - level (Frame - level) features Spgd‘
Mel-frequency cepstral coefficients (MFCC)

. . . . Frame-level
Linear Prediction cepstral coefficients (LPCC) foopie o
Residual Mel-frequency cepstral coefficients (RMFCC)

Utterance-level
Utterance - level features feature extraction
- Shimmer, Jitter
Harmonics to Noise statistics - (Voice quality) Classifier
Unvoiced to voiced frame ratio
- Opensmile - Paralinguistic Challenge 2010 configuration

Emotion
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. Traditionally used for representing speech tor tasks like speech
recognition, speaker recognition, emotion recognition etc.
. Contain information related to the vocal tract.

LPCC

. Also capture information related Glottal puises
to vocal tract.
- Used in voice coding.
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Low-level descriptors

RMFCC

- Residual signal extracted by inverse filtering of signal through LPC
filter

. E(z)*H(z) =S(z) => E(z) =S(z)/H(z) = S(z)*A(z)

. S(z) -> Speech signal

- H(z) -> Vocal tract filter (extracted

from LPCC. co_efficients) S(n) b
. E(z) -> Excitation source - A®@) -
approximation Speech signal ' . Residual

Inverse filter



Utterance-level features uw# M«w "

harmonics-to-noise ratio (HNR) shimmer

Jitter & Shimmer - collected from PRAAT
. Extracted from pitch contour
. Jitter is a measure of sum of |T(i) - T(i+1)|, T(i) = time (at pitch i)
. Shimmer is a measure of sum of |A(i) - A(i+1) ]|, A(i) = amplitude

Harmonics to noise ratio - collected from PRAAT

- Harmonicity to noise ratio in the voiced frames
Unvoiced to voiced frames ratio

- Ratio of number of frames that are unvoiced to voiced



Utterance-level features

Opensmile features (OpenSmile Appendix)

- 1582 features

. Used for Paralinguistic, emotion recognition tasks
- Represent various LLD features using statistics

- Collect various utterance level descriptors



https://link.springer.com/content/pdf/bbm%3A978-3-642-36806-6%2F1.pdf

Low-Level Features to Utterance-level

Segment-level representations for low-level descriptors are extracted:

LSTM categorical embeddings Speech
- LSTM (512 hidden units)
- LSTM (256 hidden units) Bamailaual
Dense (relu, 256 hidden units) -> feature feature extraction
- Dense (softmax, 4 outputs) ']
LSTM Autoencoder embeddings Uitk lavel

feature extraction

For both these embeddings, the frames are
truncated or padded to obtain common shape.

Classifier

&

Emotion




Opensmile vs Deep features

Opensmile features

. Independent of data (pro)
- Cannot be used for complex tasks - Transfer Learning, Multi-task

learning, cross lingual emotion recognition etc. (con)

Deep features

. Require enormous labeled data which is expensive and time taking.

(con)
. Unsupervised features (LSTM Autoencoders) can be used to solve

data sparsity issues (pro).



Evaluation and Results

Leave-one-Subject-out validation
Metrics - Accuracy

Classifiers SVM
Features Weighted (Recall / Precision / F1-score) Unweighted (Recall / Precision / F1-score)
Jitter + Shimmer + | 31.50 (3.05) 38.30 (3.29)

HNR + UV ratio

LSTM categorical | 51.47 (2.20) 52.75 (4.01)
embedding
(MFCC)

Opensmile 52.70 (1.03) 48.20 (2.76)
features (PC
2010)

LSTM categorical | 46.73 (11.82) 44.55 (0.16)
embedding

1 IO\



Future Work

- Evaluation on LSTM Autoencoder embeddings
. Check if significant improvement exists by fusing features.



Conclusions

- We have explored various features including deep LSTM features for
speech emotion recognition

. Addressed the usefulness of each features in different scenario.

- We have found that their performances are comparable.



References

[1] S.B. Davis, and P. Mermelstein (1980), "Comparison of Parametric Representations for Monosyllabic Word Recognition in
Continuously Spoken Sentences," in IEEE Transactions on Acoustics, Speech, and Signal Processing, 28(4), pp. 357-366.

[2] Atal BS. Effectiveness of linear prediction characteristics of the speech wave for automatic speaker identification and
verification. the Journal of the Acoustical Society of America. 1974 Jun;55(6):1304-12.

[3] Ingale AB, Chaudhari DS. Speech emotion recognition. International Journal of Soft Computing and Engineering (IJSCE). 2012
Mar;2(1):235-8.


https://books.google.com/books?id=yjzCra5eW3AC&pg=PA65&dq=cosine+mel+pols&lr=&as_brr=3&ei=ytJmSZGLNI6ukAThwuGxCA#PPA65,M1
https://books.google.com/books?id=yjzCra5eW3AC&pg=PA65&dq=cosine+mel+pols&lr=&as_brr=3&ei=ytJmSZGLNI6ukAThwuGxCA#PPA65,M1

Questions ?



